

Plant Archives

Journal homepage: http://www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.382

GENETIC DIVERSITY STUDIES FOR SEED COTTON YIELD AND FIBER OUALITY PARAMETERS IN DIVERSE COTTON GENOTYPES

Cheerla Pavan¹*, Rani Chapara², M. Sudha Rani³, G.A. Diana Grace⁴, M. James⁵ and Priyadharshini⁶

¹Department of Genetics and Plant Breeding, Agricultural College, Bapatla - 522 101, Andhra Pradesh, India.

²Scientist (Genetics and Plant Breeding), Regional Agricultural Research Station, ANGRAU, Lam, Guntur - 522 034, AP, India.

³Principal Scientist (Genetics and Plant Breeding), Regional Agricultural Research Station, ANGRAU, Maruteru-534 122, AP, India.

⁴Scientsist (Entomology), Regional Agricultural Research Station, ANGRAU, Lam, Guntur - 522 034, Andhra Pradesh, India.

⁵Research Associate (Genetics and Plant Breeding), Regional Agricult. Research Station, ANGRAU, Lam, Guntur-522034, AP, India.

⁶Data Analyst (Agronomy), Regional Agricultural Research Station, ANGRAU, Lam, Guntur - 522 034, Andhra Pradesh, India.

*Corresponding author E-mail: pavancheerla610@gmail.com

(Date of Receiving-20-08-2025; Date of Acceptance-24-10-2025)

ABSTRACT

Genetic diversity plays a vital role in crop improvement programmes, offering researchers the opportunity to develop new and improved varieties with desirable traits that meet the preferences of both farmers and breeders. The present study aimed to characterize the genetic diversity among 53 cotton genotypes. These genotypes were evaluated using an augmented block design during the *kharif* season of 2024–25 at the Regional Agricultural Research Station, Lam Farm, Guntur. Cluster analysis revealed significant genetic divergence among the genotypes. Based on Tocher's method of D² analysis, the genotypes were grouped into four distinct clusters. Cluster II contained maximum genotypes, followed by Cluster III. cluster I exhibited the maximum intra cluster distance (38.42) while the minimum intra cluster distance was observed by cluster IV (19.64). The cluster I recorded the largest distance from cluster IV (49.64). Crossing between genotypes of the cluster I (Suvin and CCB 29) and cluster IV (L 2384, L 2275, L 2385 and L 2383) can be made based on these studies to create suitable transgressive segregants. Seed index contributed the most to genetic divergence, followed by upper half mean length, micronaire and seed cotton yield per plant. It can be concluded that selecting genetically divergent parents based on these attributes would be beneficial for maximizing genetic diversity in breeding programs.

Key words: Cotton, Genetic diversity, D² statistic, Seed cotton yield.

Introduction

Cotton (*Gossypium* spp.) is one of the oldest cultivated crops and it is grown as the main source of raw materials for the textile industries. It is a vital commercial cash crop in India, contributing about 20.67% of global cotton production (ICAR-AICRP (Cotton)—Annual Report 2024–25). Cotton is mainly cultivated in tropical as well as sub-tropical regions and is mainly grown for fibre and oil purpose. It is crucial for increasing the country's economy and is popularly known as "white gold" (Komala *et al.*, 2018). It belongs to the genus *Gossypium* and the family malvaceae. There is an extensive genetic variation present in this genus distributed among 50

species, of which four are cultivated, 44 are wild diploids and two are wild tetraploids (Percival and Kohel, 1990).

India is the only country where all the four species of cotton are cultivated that include *Gossypium arboreum* L. and *Gossypium herbaceum* L. (Asian cotton) which are diploid species (2n=2x=26) and are known as old world cottons; *Gossypium barbadense* L. (Egyptian cotton) and *Gossypium hirsutum* L. (American upland cotton) which are tetraploid species (2n=4x=52) and are known as new world cottons.

The extent and nature of available genetic variation within germplasm offer significant potential for use in successful breeding programs. This can lead to improvements in various characteristics related to seed cotton yield and fibre quality (Chapara *et al.*, 2022). Genetically diverse germplasm forms the foundation of any successful hybridization programme. Crosses between genetically divergent parents often lead to the development of high-yielding varieties. Mahalanobis D² analysis (Mahalanobis, 1936) plays a crucial role in identifying such diverse parents, which can be effectively utilized in hybridization programmes to generate novel and useful varieties.

The importance of Mahalanobis D² analysis in quantifying genetic divergence was also studied by Gauswami Jyoti *et al.* (2021), Satish (2021), Sirisha *et al.* (2022), Meena *et al.* (2022), Prakash and Suthar (2023) Sagar *et al.* (2023) and Chapara *et al.* (2024).

In the present investigation, 53 cotton genotypes were analyzed using Mahalanobis D² analysis, which resulted in the formation of distinct clusters. Genotypes from these diverse clusters can be effectively utilized in hybridization programmes to enhance genetic variability and develop improved varieties.

Materials and Methods

Plant Material and Site characteristics

50 cotton genotypes along with three checks (NDLH 2051-1, Sivanandhi and CICR 23 Bt) varieties were evaluated during *kharif* season 2024-2025 at experimental area of Regional Agricultural Research Station, Lam farm, Guntur, Andhra Pradesh which was present at 160 20' North latitude and 800 26' East longitude and an altitude of 31.5 m above mean sea level. The experiment was sown on 1st August to evaluate genotypes for yield and fibre parameters. The list of the genotypes was presented in Table 1.

Observations recorded

Data was collected from ten randomly selected plants on various seed cotton yield contributing traits like days to fifty per cent flowering (plot basis), plant height (cm), number of monopodia per plant, number of sympodia per plant, number of bolls per plant, boll weight (g), lint index (g), seed index (g), ginning out turn (%), seed cotton yield per plant (g) and for fibre quality traits like Upper Half Mean Length (UHML) (mm), uniformity index (%), micronaire (μ g/inch) and tenacity (g/tex) data was recorded on plot basis.

Experimental design

The experiment was conducted using Augmented Block Design (Federer, 1956) in six blocks. In first five blocks, 12 entries (nine genotypes + three checks) and in the last block eight entries (five genotypes + three checks)

Table 1 : Details of the cotton genotypes studied in the present investigation.

investigation.							
S.	Genotypes				types Entries		
no.				no.			
1	GP1	LHBT 2203	28	GP28	L2273		
2	GP2	LHBT 24	29	GP29	Yaganti		
3	GP3	LHBT 8	30	GP30	Srinandi		
4	GP4	NDLH3104-4	31	GP31	NDLA 3116-4		
5	GP5	LHBT9	32	GP32	Suvin		
6	GP6	NDLH 2985	33	GP33	CCB 29		
7	GP7	LHBT 26	34	GP34	L2396		
8	GP8	NDLH3116-4	35	GP35	L2384		
9	GP9	LHBT 6	36	GP36	L2274		
10	GP 10	LHBT 22	37	GP37	L2275		
11	GP11	LHBT 7	38	GP38	L2277		
12	GP12	ARCV 111	39	GP39	L2278		
13	GP13	WGCV Bt 26	40	GP40	L2281		
14	GP 14	LHBT 2390	41	GP41	L2265		
15	GP 15	LHBT 2392	42	GP42	L2386		
16	GP16	LHBT 2385	43	GP43	L2389		
17	GP17	LHBT 2383	44	GP44	L2390		
18	GP18	LHBT 2395	45	GP45	L2385		
19	GP 19	Lam Bt 2208	46	GP46	L2395		
20	GP20	ARCV 99	47	GP47	L2388		
21	GP21	LHBT 3	48	GP48	L2383		
22	GP22	Lam Bt 2209	49	GP49	L2387		
23	GP23	LHBT 4	50	GP50	L2382		
24	GP24	L2381	51	Check 1	CICR 23 Bt		
25	GP25	L2267	52	Check 2	NDLH 2051-1		
26	GP26	L2268	53	Check 3	Sivan- andhi		
27	GP27	L2270					

were planted randomly in the blocks. Each entry was sown in two rows with a row length of 6.3 m each with a spacing of 105×60 cm.

Statistical analysis

The means of 14 traits were subjected to Analysis of Variance (ANOVA) following the statistical procedure outlined by Falconer (1964). Subsequently, the data were analyzed using Mahalanobis D² statistics (Mahalanobis, 1936) to assess genetic divergence. Genotypic clustering

was performed based on the minimum generalized distance using Tocher's method, as described by Rao (1952).

Intra-cluster distances were calculated as the sum of D² values between all possible pairs of genotypes within a cluster, divided by the number of such combinations. For inter-cluster distances, each cluster was compared with all others by computing the average D² distance between all genotype pairs from the two clusters. This was obtained by summing the D2 values for all combinations between members of the two clusters and dividing by the product of the number of genotypes in each cluster. Based on the inter-cluster D2 values, the classification scale proposed by Rao (1952) was used to interpret the extent of genetic divergence and a cluster diagram was constructed accordingly. The mean data was used to perform Principal Component Analysis (PCA) using 'factoextra', 'factoextra' package in R studio version R.4.4.2.

Results and Discussion

ANOVA revealed significant differences among the 53 genotypes for all the traits studied, indicating the presence of substantial genetic variability and diversity within the material. Based on Tocher's method (Rao, 1952), the genotypes were grouped into four distinct clusters, ensuring that the average intra-cluster D² values were lower than the inter-cluster D² values. The distribution of genotypes across the four clusters was

presented in Table 2 and illustrated diagrammatically in Fig. 1. Similar finding was reported by Sarwar *et al.* (2021).

The analysis showed that cluster I contained the fewest genotypes, with only two genotypes both belonging to the Gossypium barbadense L. species. Cluster II showed the highest number of genotypes, totaling of 29 genotypes, which included both Gossypium arboreum L. and Gossypium hirsutum L. Cluster III comprised of 18 genotypes. Lastly, cluster IV included four genotypes. The observed pattern of clustering indicated that genetic diversity is not necessarily correlated with geographical origin. Instead, it may result from various factors such as natural selection, exchange of breeding material, genetic drift, and environmental variation. Therefore, the selection of genotypes for hybridization should be based on genetic diversity rather than geographical distribution (Arunachalam and Ram, 1967).

The intra-cluster average D² values ranged from 19.64 to 38.42. Among the four clusters, Cluster I exhibited the highest intra-cluster distance (38.42), indicating greater genetic variability among its genotypes, while Cluster IV showed the lowest intra-cluster distance (19.64). The maximum inter-cluster distance was observed between Cluster I and Cluster IV (49.64), followed by Cluster I and Cluster II (47.46) and Cluster I and Cluster III (47.00), suggesting a high degree of genetic divergence between

Table 2: Clustering pattern using Tocher's method for seed cotton yield attributing traits and fibre quality traits in 53 cotton genotypes.

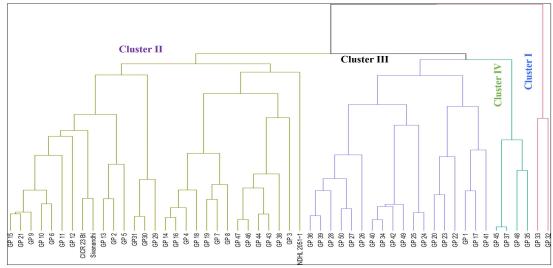
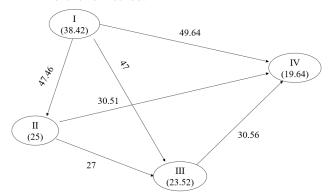

Cluster No.	Number of genotypes	Name of genotype(s)
I	2	Suvin and CCB 29
П	29	Yaganti, Srinandi, NDLA 3116-4, L2395, L2388, L2277, L2390, L2389, LHBT 22, LHBT 7, ARCV 111, WGCV Bt 26, LHBT 2390, LHBT 2392, LHBT 2385, LHBT 2395, Lam Bt 2208, LHBT 3, LHBT 24, LHBT 8, NDLH34104-4, LHBT 9, NDLH 2985, LHBT 26, NDLH 3116-4, LHBT 6, CICR 23 Bt, Sivanandhi and NDLH 2051-1
Ш	18	L2387, L2274, L2281, L2386, L2396, L2278, L2382, L2265, LHBT 2203, LHBT 2383, ARCV 99, Lam Bt 2209, LHBT 4, L2267, L2273, L2381, L2268 and L2270
IV	4	L 2384, L 2275, L 2385 and L 2383

Table 3: Average intra (bold) and inter-cluster D² values among the four clusters for seed cotton yield attributing and fibre quality traits in 53 cotton genotypes.

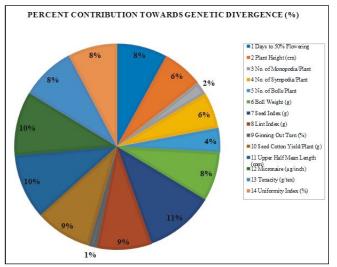

Clusters	I	I	Ш	IV
I	38.42	47.46	47.00	49.64
II		25.00	27.00	30.51
III			23.52	30.56
IV				19.64

these groups.

These results highlight the importance of carefully selecting both the appropriate clusters and specific genotypes within them when planning a crossing programme. Crosses between genotypes from divergent clusters are more likely to exhibit high heterosis and generate useful transgressive segregants. For further genetic studies, such as diallel or line × tester analysis, one or two genotypes from each cluster may be selected

Fig. 1: Dendrogram showing relationship among 53 cotton genotypes in four clusters based on Mahalanobis D² values by Torcher's Method.

Fig. 2: Intra and inter-cluster distances in four clusters based on Tocher's method in 53 cotton genotypes.


strategically. Notably, crosses between genotypes from Cluster I (Suvin and CCB 29) and Cluster IV (L 2384, L 2275, L 2385, and L 2383) are expected to produce desirable transgressive segregants and could be promising for future breeding efforts. The intra- and inter-cluster D² values among the four clusters are presented in Table 3 and illustrated in Fig. 2.

Cluster means for yield and fibre quality traits in 53 genotypes were presented in Table 4. Cluster means reflect the average performance of all genotypes within a specific cluster. These estimates were useful for identifying potential donor genotypes that could be used to enhance particular traits.

The cluster mean analysis revealed considerable variation across the studied traits. Among all clusters, Cluster III recorded the highest and most desirable mean values for key yield-related traits, including number of sympodia per plant, number of bolls per plant, seed index, lint index, ginning out turn and seed cotton yield per plant. In contrast, Cluster I exhibited the highest mean values for important fibre quality traits such as upper half mean

length and uniformity index. Based on these findings, the selection of genotypes from Clusters I and III could be recommended for future crop improvement programmes aimed at developing high-yielding cotton genotypes with superior fibre quality.

A perusal of the results on per cent contribution of 53 genotypes for 14 characters towards genetic divergence were presented in Fig. 3 and Table 5. The results revealed that maximum contribution towards genetic divergence was observed by seed index (10.89%), followed by upper half mean length (10.11%), micronaire (10.10%), seed cotton yield per plant (9.01%), lint index (8.62%), tenacity (8.55%), days to fifty per cent flowering (7.94%), boll weight (7.79%), uniformity index (7.77%), plant height (6.39%), number of sympodia per plant (5.64%), number of bolls per plant (3.82%) and number of monopodia per plant (2.09%). The lowest contribution

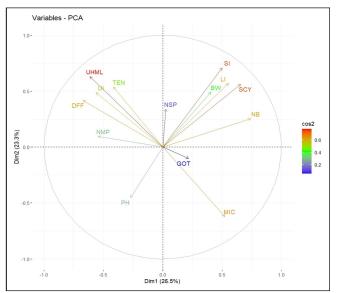
Fig. 3: Relative contribution of 14 traits towards total genetic divergence in 53 cotton genotypes.

Table 4:	Cluster means for seed cotton yield attributing traits and fibre
	quality traits by Tocher's method in 53 cotton genotypes.

Characters	Clusters No.				
	I	I	Ш	IV	
Days to fifty per cent flowering	78.11	59.99	60.22	61.70	
Plant height (cm)	127.22	157.73	142.23	123.95	
Number of monopodia per plant	2.09	1.11	1.29	1.30	
Number of sympodia per plant	18.68	18.47	20.89	20.36	
Number of bolls per plant	32.92	42.67	55.54	40.85	
Boll weight (g)	2.51	4.66	4.70	4.95	
Seed index (g)	8.11	9.94	11.30	10.76	
Lint index (g)	4.32	5.14	5.59	4.16	
Ginning out turn (%)	33.08	35.03	35.43	34.83	
Seed cotton yield per plant (g)	63.59	102.96	135.30	123.07	
Upper half mean length (mm)	32.41	28.28	28.81	30.61	
Micronaire (µg/inch)	3.25	4.65	4.60	4.38	
Tenacity (g/tex)	29.23	28.58	28.46	29.98	
Uniformity Index (%)	85.67	81.87	82.42	84.75	

Table 5: Per cent contribution of different characters towards genetic divergence in 53 cotton genotypes.

S. no.	Traits	Contribution (%)
1	Days to fifty per cent flowering	7.94
2	Plant height (cm)	6.39
3	Number of monopodia per plant	2.09
4	Number of sympodia per plant	5.64
5	Number of bolls per plant	3.82
6	Boll weight (g)	7.79
7	Seed index (g)	10.89
8	Lint index (g)	8.62
9	Ginning out turn (%)	1.29
10	Seed cotton yield per plant (g)	9.01
11	Upper half mean length (mm)	10.11
12	Micronaire (µg/inch)	10.10
13	Tenacity (g/tex)	8.55
14	Uniformity Index (%)	7.77


was observed by ginning out turn (1.29%) indicating less towards divergence inferring more homogeneity in the material evaluated. Similar studies were reported by Sagar *et al.* (2023), Satish (2021) and Naik *et al.* (2016).

Principal Component Analysis (PCA)

Mean data of all the 14 studied traits were analyzed by principal component analysis in R Studio to investigate the genetic divergence among 53 cotton genotypes. The results suggested the importance of the first four PCs with eigen values greater than or equal to one in discriminating the germplasm collection. The first two PC's were considered to represent the biplot as it was

capable to explain 49.73 % of the total variation. Hence, the other two PC's (PC₃ and PC₄) were ignored for biplot analysis. The results revealed that four canonical roots accounted for 70.56% of total divergence. The PC₁ contributed maximum towards divergence (26.47%) with eigen value of 3.70. The second, third and fourth canonical vectors contributed 23.25%, 11.54% and 9.28% respectively to total divergence with eigen values of 3.25, 1.61 and 1.30, respectively (Table 6).

In the first principal component (PC_1), the trait number of bolls per plant made the highest contribution to total genetic divergence, accounting for 14.82% of the variability. This was followed by days to 50% flowering (12.19%), seed cotton yield per plant (11.63%), upper half mean length (10.15%), uniformity index (8.48%), lint index (8.29%), and number of monopodia per plant (7.97%). In the second principal component (PC_2),

Fig. 4: PCA biplot representing distribution of 14 variables in 53 cotton genotypes.

seed index emerged as the most influential trait, contributing 15.36% to the total divergence. This was followed by UHML (12.19%), micronaire (11.78%), lint index (9.91%), seed cotton yield per plant (9.66%), tenacity (8.80%), boll weight (7.38%), and uniformity index (7.22%) (Table 6).

The PCA biplot analysis of 53 cotton genotypes in 14 traits identified that the yield contributing variables *i.e.*, number of sympodia per plant number of bolls per plant, boll weight, lint index and seed cotton yield per plant were significantly loaded in PC₁ and contributed more towards variability. The PC₂ contributed for fibre quality traits like UHML, tenacity and micronaire (Fig

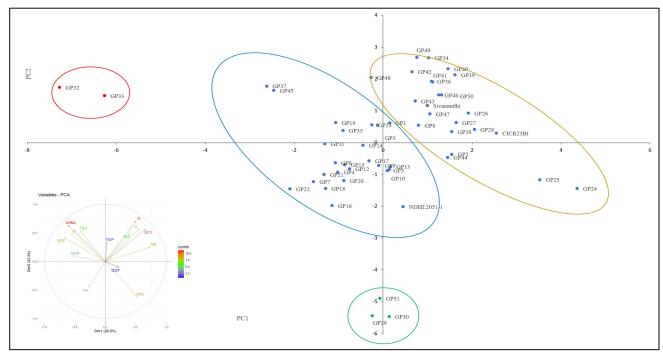


Fig. 5: PCA biplot representing distribution of 53 cotton genotypes.

Table 6: Canonical vectors for 14 characters in 53 cotton genotypes.

Parameter	PC.	PC,	PC,	PC,		
Eigen Value (Root)	3.70	3.25	1.61	1.30		
Variance (%)	26.47	23.25	11.54	9.28		
Cumulative Variance (%)	26.47	49.73	61.27	70.56		
Characters						
Days to fifty per cent flowering	12.19	5.32	3.12	8.07		
Plant height (cm)	1.99	6.30	9.91	28.75		
Number of monopodia per plant	7.97	0.27	17.15	5.17		
Number of sympodia per plant	0.02	3.51	0.01	49.41		
Number of bolls per plant	14.82	1.98	10.37	1.16		
Boll weight (g)	4.43	7.38	13.44	1.22		
Seed index (g)	6.77	15.36	2.86	0.29		
Lint index (g)	8.29	9.91	1.78	0.13		
Ginning out turn (%)	1.29	0.32	28.00	3.35		
Seed cotton yield per plant (g)	11.63	9.66	0.42	0.05		
Upper half mean length (mm)	10.15	12.19	2.29	0.01		
Micronaire (µg/inch)	7.33	11.78	2.02	0.91		
Tenacity (g/tex)	4.63	8.80	7.79	0.02		
Uniformity Index (%)	8.48	7.22	0.85	1.46		

4).

The PCA biplot analysis of 53 cotton genotypes revealed that GP 49 (L2387), GP 34 (L 2396), GP 24 (L 2381), GP 25 (L 2267), GP 29 (Yaganti), GP 30 (Srinandi), GP 31 (NDLA 3116-4), GP 32 (Suvin), GP 33 (CCB 29), GP 37 (L 2275) and GP 45 (L 2385) were identified as the most divergent genotypes as they were located far

away from the origin. Hence, these genotypes could be effectively used in hybridization programmes for crop improvement (Fig. 5).

Conclusion

Multivariate analysis demonstrated substantial genetic diversity among the 50 cotton genotypes, including three checks. The genotypes were grouped into four clusters using D² analysis. Cluster II contained the highest number of genotypes (29), followed by cluster III (18), cluster IV (4) and cluster I (2). Among all the clusters, cluster III recorded the highest desired mean values for most of the yield traits viz., plant height, number of sympodia per plant, number of bolls per plant, seed index, lint index and seed cotton yield per plant. Selection of genotypes from clusters III could be therefore suggested for utilization in future crop improvement programs aimed at the development of high yielding cotton genotypes. The seed index contributed the most to genetic divergence (10.89%), followed by UHML (10.11%), micronaire (10.10%) and seed cotton yield per plant (9.01%). Cluster analysis revealed that crossing between genotypes of clusters I (Suvin and CCB 29) and cluster IV (L 2384, L 2275, L 2385 and L 2383) were divergent and should be tested for their combining ability through Line x Tester mating design or diallel analysis and then could be utilized in future crop improvement programs for the exploitation of heterosis.

Acknowledgement

All authors have read and agreed to the manuscript.

The authors thank Agricultural college, Bapatla and Regional Agricultural Research Station, Lam farm, Guntur for their immense support during the research.

Conflicts of interest

The authors declare no competitive or financial conflicts of interest.

References

- Arunachalam, V. and Ram J. (1967). Geographical diversity in relation to genetic divergence in cultivated sorghum. *Indian J. Gen. Plant Breed.*, **27**, 369-380.
- Chapara, R., Reddy K.S., Rani M.S. and Sudhamani K. (2024). Association and divergence studies for yield and its attributing traits in upland cotton. *The J. Res. Angrau*, **52**(1), 1-8.
- Chapara, R., Reddy K.V., Rani M.S., Lakshmi B.S., Roja V. and Pranaya J. (2022). Variability studies and genetic divergence in cotton (*Gossypium hirsutum* L.) germplasm using multivariate analysis. *Elect. J. Plant Breed.*, **13**(4), 1305-1311.
- Falconer, D.S. (1964). An Introduction to Quantitative Genetics. Oliver and Boyd Publishing Co. Pvt. Ltd., Edinburgh. 312-324.
- Federer, W.T. (1956). Augmented designs. *Hawaiian Planter's Record*, **55**, 191-208.
- Gauswami Jyoti, J., Valu M.G and Odedara Geeta N. (2021). Correlation, path coefficient and D² analysis study of seed cotton yield and fibre quality traits in American cotton (*Gossypium hirsutum* L.). *J. Pharmacog. Phytochem.*, **10**(3), 222-230.
- ICAR- All India Coordinated Research Project on Cotton, Annual Report (2024-25), Nagpur.
- Komala, M., Ganesan N.M. and Kumar M. (2018). Genetic variability, heritability and correlation analysis in F₂ populations of ratoon upland cotton hybrids. *Int. J. Agricult.*, *Environ. Biotechnol.*, **11(6)**, 815-827.

- Mahalanobis, P.C. (1936). On the generalized distance in statistics. *Proc. Nat. Inst. Sci. India*, **12**, 49-55.
- Meena, R.K., Meena R.K., Koli G.K. and Kumar D. (2022). Insights of genetic divergence through Mahalanobis D² statistics among American cotton (*Gossypium hirsutum* L.) genotypes. *Biological Forum–An Int. J.*, **14(2)**, 790-795.
- Naik, B.M., Satish Y. and Babu D.R. (2016). Genetic diversity analysis in American cotton (*Gossypium hirsutum* L.). *Elect. J. Plant Breed.*, **7(4)**, 1002-1006.
- Percival, A.E. and Kohel R.J. (1990). Distribution, collection, and evaluation of *Gossypium* spp. *Adv. Agron.*, **44**, 225-256.
- Prakash, V. and Suthar G. (2023). Cluster analysis in newly developed Bt cotton hybrids (G. hirsutum). J. Progressive Agricult., 14 (1), 23-26.
- Rao, C.R. (1952). *Advanced Statistical Methods in Biometrical Research*. John Wiley and Sons Inc., New York. 236-272.
- Sagar, U.N., Reddy B.V., Vishnuvardhan K.M., Prasanna R.A., Rao E.S.V., Sabitha N., Kalyani D.L., Reddy Y.R. and Suresh G. (2023). Genetic analysis of fibre quality and yield related traits in desi cotton (*Gossypium arboreum* L.). *Elect. J. Plant Breed.*, **14(3)**, 833-840.
- Sarwar, G, Nazir A., Rizwan M., Shahzadi E. and Mahmood A. (2021). Genetic diversity among cotton genotypes for earliness, yield and fiber quality traits using correlation, principal component and cluster analyses. *Sarhad J. Agricult.*, **37(1)**, 307-314.
- Satish, Y. (2021). Genetic diversity analysis in American cotton (*Gossypium hirsutum* L.) genotypes. *Elect. J. Plant Breed.*, **12(4)**, 1448-1453.
- Sirisha, A.B.M., Lal Ahamed M., Kumari S.R. and Rao V.S. (2022). Genetic divergence studies in upland cotton (Gossypium hirsutum L.) germplasm. The Andhra Agricult. J., 69(3), 346-353.